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Abstract—Using speech or text to predict articulatory move-
ments can have potential benefits for speech related applications.
Many approaches have been proposed to solve the acoustic-to-
articulatory inversion problem, which is much more than the
exploration for predicting articulatory movements from text. In
this paper, we investigate the feasibility of using deep neural
network (DNN) for articulartory movement prediction from
text. We also combine full-context features, state and phone
information with stacked bottleneck features which provide wide
linguistic context as network input, to improve the performance
of articulatory movements’ prediction. We show on the MNGU0
data set that our DNN approach achieves a root mean-squared
error (RMSE) of 0.7370 mm, the lowest RMSE reported in
the literature. We also confirmed the effectiveness of stacked
bottleneck features, which could include important contextual
information.

Index Terms: articulatory movement prediction, stacked bot-

tleneck features, deep neural network

I. INTRODUCTION

Humans use articulatory movements, involving systematic

combinations of motions from tongue, jaw, lips, velum and

other articulators, to produce sound. In practice, as an ef-

fective description of speech, articulatory movements, or so-

called articulatory features, are known to be quite useful in

many practical applications. In speech recognition, articulatory

features can improve the recognition performance [1], [2] by

providing additional speech production information. In speech

synthesis, articulatory features can supplement text to improve

the voice quality or to retouch the characteristics of synthe-

sized voice [3], [4]. In talking-head animation, articulatory

features can be regarded as an intermediate parametrization of

speech that has a close link with facial movements [5], [6].

More practically, it can be used to help language learners to

correct pronunciation and find the pronunciation defects. Usu-

ally, human articulography, e.g., electromagnetic articulogra-

phy (EMA) [7] can be used to acquire articulatory movements,

but with a cumbersome setup and a complicated recording

procedure. Due to the complex procedure and professional

facilities, using recorded articulatory movements cannot be

popularized, which leads to many trials on predicting them

from text or speech.

In this study, we aim to predict articulatory movements

from text. In this area, various methods have been previously

proposed, and here we just review a few of the most influential

ones. In [8], a Gaussian distribution model of articulator

positions at phone midpoints together with an explicit coartic-

ulation model was adopted to predict articulatory movements

from time-aligned phone strings. In [9], each kinematic tri-

phone model was characterised by three kinematic features of

a tri-phone and by the intervals between two successive phones

in the tri-phone. Similar to statistical parametric speech synthe-

sis (SPSS), hidden Markov model (HMM) - based articulatory

prediction usually adopts a rich set of features, which may

include both linguistic and prosodic representations. In [10],

HMM was proven to be quite useful in articulatory prediction

from text (and speech), and the combination of text and

acoustic features led to the best result in prediction accuracy.

Recently, due to the tremendous success in speech recogni-

tion [11], [12] and synthesis [13], [14], deep neural networks

(i.e., neural networks with multiple hidden layers), have been

introduced to solve the articulatory prediction problem. As

an early attempt, Uria et al. [15] investigated a DNN and

a deep version of the trajectory mixture density network

(TMDN) in articulatory prediction from acoustic input. By

using a pre-defined fixed-length context window which covers

several frames of acoustic features as the network input,

the important speech context information is modelled. Their

approach achieves state-of-the-art performance in articulatory

prediction from speech with an average RMSE of 0.885 mm

on the MNGU0 test data set [7].

Following the success in speech-to-articulatory-movement

prediction (i.e., articulatory inversion), in this paper, we inves-

tigate the feasibility of using deep neural network in predicting

articulartory movements from textual input. We show on the

MNGU0 data set that our DNN approach achieves a root

mean-squared error (RMSE) of 0.7370 mm. To the best of our

knowledge, this is the lowest RMSE reported on this corpus

for the text-to-articulatory-movement prediction task.

In the previous study on articulatory prediction from speech

input [15], to get around the frame-by-frame independence

problem of a DNN, a context window covering several acous-

tic frames is adopted as network input. But big window might

be infeasible when textual features are used as input. This

is because the frame-wise full-context features can expand to

several hundred dimensions. Hence, motivated by [16], [17],



[18], [19], in this paper, we propose to use bottleneck feature

stacking to effectively model the context. Note that recurrent

neural networks (RNNs) can be applied to model sequential

data in the task [20], but sometimes they can be difficult

or computationally expensive to optimize [16]. In contrast,

stacked bottleneck features are widely used as a compact

representation, modeling the context information in a simpler,

but highly-effective way. Specially in our approach, we first

train a DNN with a narrow bottleneck hidden layer and the

activations of the bottleneck units yield a compact represen-

tation of linguistic information for each frame independently.

Then multiple consecutive frames of bottleneck features are

stacked to result in a wide context around the current frame.

The stacked bottleneck features are combined with the full-

context features, state and phone information, used as input

to a second DNN that predicts the articulatory movements.

On the MNGU0 data set, we confirmed the effectiveness of

stacked bottleneck features with further RMSE reduction.

II. DNN FOR TEXT-TO-ARTICULATORY PREDICTION

DNN-based text-to-articulatory prediction includes training

model and generation of predicted articulatory parameters,

which is shown in the Fig. 1. During training, the complex

relationship between normalized input linguistic features and

corresponding normalized output articulatory features, which

consist of static features, and corresponding dynamic features,

is learned. The dynamic features are used as a constraint to

generate smooth parameter trajectories.

A sequence of linguistic features is given to the trained

model during generation, and then the corresponding artic-

ulatory features can be generated by performing a forward

propagation once per frame. After denormalizing generated

output, we use the maximum likelihood parameter generation

(MLPG) algorithm [21], taking the dynamic feature constraints

into account, to generate the smoothed parameter trajectories.
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Fig. 1. Deep neural network (DNN) for text-to-articulatory prediction.

III. STACKED BOTTLENECK FEATURES

Bottleneck features are the activations at a bottleneck layer

in a DNN, which have a smaller number of hidden units

compared with other hidden layers in the same network. Since

there are far fewer hidden units in the bottleneck layer, the

DNN training process forces the activation signals in this

layer to form a low-dimensional compact representation of

the original inputs, and reduces the redundancy of the input

features. Bottleneck features have been extensively employed

in automatic speech recognition (ASR) as a compact rep-

resentation of acoustic features [22], [23], [24]. For speech

synthesis, text-to-articulatory prediction and any other tasks

using linguistic features as input, bottleneck features can be

viewed as a compressive transform of linguistic features,

extracted at the frame level.

Fig. 2 shows a typical architecture of a DNN that stacks

several consecutive frames of bottleneck features around the

current frame. A four-hidden-layer bottleneck network on

the left has a bottleneck layer on the second layer near the

input [16], [25]. In practice, the number of layers, the number

of nodes in bottleneck layer, the training data and other

settings in specific networks can be different from the example

network. After bottleneck features are extracted from the left-

hand network, they are then stacked as input to the network

on the right, which doesn’t increase the input dimensionality

and the computational complexity of the right-hand network

much since the dimensionality of the bottleneck features is

quite small (e.g., 32).

In particular, in text-to-articulatory prediction, we can gen-

erate bottleneck features from three sources.

(1) Linguistic-to-articulatory: We can use linguistic fea-

tures as input and articulatory features as output to train

a bottleneck network, and generate bottleneck features as

a compact representation of linguistic features which are

more relevant to articulatory movements.

(2) Linguistic-to-acoustic: Given the high correlation be-

tween articulatory movements and acoustic features

shown in articulatory inversion [15], [20], we use lin-

guistic features as input and acoustic features as output

to train the bottleneck network, to investigate the effect

of bottleneck features generated from this method.

(3) Linguistic-to-acoustic-from-multiple-speakers: Acous-

tic features can be used as the output of the bottle-

neck network, and the bottleneck features may be more

representative and robust if generated by the bottleneck

network trained with a large amount of data. Thus we

can use speech data from multiple speakers and extract

bottleneck features according to the method introduced

in (2).

In this paper, we will stack these three sources of bottle-

neck features with original linguistic features, respectively, to

predict articulatory movements and compare the effectiveness

of them.

IV. EXPERIMENTAL SETUP

A. Data sets and linguistic features

Our experiments are carried out on MNGU0 database [7]

with 1,263 English utterances from a single speaker recorded

in a single session. Parallel recordings of acoustic data and



Fig. 2. Deep neural network (DNN) with stacked bottleneck features. In this example, the bottleneck features for three consecutive frames are stacked as input
to the second network. In practice, more than three frames can be included. H′(t, 2) is the vector of bottleneck feature for the tth frame.

EMA data are available. EMA data are collected with a

sampling frequency of 200Hz from 6 sensors located at the

tongue dorsum, tongue body, tongue tip, lower lip, upper

lip, and lower incisor. Since the movements in z-axis are

very small, we only use x- and y- coordinates of the 6

receivers in the experiments. The waveforms are in 16kHz

PCM format, and we use the STRAIGHT vocoder to ex-

tract 60-dimensional Mel-Cepstral Coefficients (MCCs), 25-

dimensional band aperiodicities (BAPs), and log-scale funda-

mental frequency (logF0 at a 5ms frame step). We will also use

bottleneck features from bottleneck network trained by other

large databases, so we use default phone list in Festival to

regenerate the full-context labels for MNGU0 database instead

of using its own phone list, and finally leave 1, 262 utterances

to do the text-to-articulatory prediction task. The MNGU0

database is partitioned into three subsets: a training set with

1,200 utterances, a validation set comprising 32 utterances and

a test set consisting of the other 30 utterances.

For all the networks used in our experiments which were

trained by an open-source neural network TTS toolkit, Mer-

lin1 [26], the input features (with silence segments excluded)

consist of 492-dimensional binary features and 9-dimensional

numerical features (501 dimension in total). Following the

standard configuration in DNN-based text-to-speech [16], the

492-dimensional binary features are derived from linguistic

context such as quin-phone identities, position information of

phoneme, syllable, word and phrase, etc.; the 9-dimensional

numerical features are the frame position information, such as

frame position in HMM state and phoneme, state position in

phoneme, and state and phoneme durations.

B. Deep neural network

To verify the effectiveness of deep neural network, we

use a feed-forward network trained to minimise frame-by-

1https://github.com/CSTR-Edinburgh/merlin

frame prediction error. The output features are 12-dimensional

articulatory features from MNGU0 database and their corre-

sponding delta, delta-delta features (36 dimension in total).

The network has empirically set to six hidden layers, each of

256 units. The bottom layers use tangent activation function,

while the output layer is a linear regression layer. Learning

rate is 0.0015 and momentum is 0.3 in the first 10 epochs,

and then after 10 epochs the momentum is set to 0.9. The

maximum number of epochs is 25. In the experiment, the

network settings including depth of network, number of nodes

in hidden layer, learning rate and momentum will be the same

if using MNGU0 database to train the network for text-to-

articulatory prediction.

C. DNN with stacked bottleneck features

DNN with stacked bottleneck features splices consecutive

frames of bottleneck features and linguistic features as input.

Considering the difference among training data sets used in

bottleneck network, as described in Section III, we divide this

experiment into three parts, listed as follows:

• DNN-BN-Arti: We use linguistic features and articula-

tory features extracted from MNGU0 database to train the

bottleneck network, as described in Section III (a). For the

bottleneck network, the input is 501-dimensional binary

features, and the corresponding output is 36-dimensional

articulatory features including 12-dimensional articula-

tory movements with their corresponding delta and delta-

delta features (36 dimension in total). There are 6 feed-

forward hidden layers, each of which has 256 hidden

units, except that the second hidden layer is set as the

bottleneck layer, with only 32 hidden units. For the net-

work of text-to-articulatory prediction, from only 1 frame

to 21 consecutive frames (middle frame +/- 10 frames)

of bottleneck features are stacked as input. Hence, the

dimension of input layer increases from 533 dimension



(32-dimensional bottleneck features + 501-dimensional

linguistic features) to 1173 dimension (32-dimensional

bottleneck features × 21 + 501-dimensional linguistic

features).

• DNN-BN-Acoustic: We extract acoustic features, instead

of articulatory features, from MNGU0 database as the

output of the bottleneck network, as described in Sec-

tion III (b). For bottleneck network, the input is 501-

dimensional binary features, and the corresponding out-

put is 259-dimensional acoustic features including 60-

dimensional MCCs, 25-dimensional BAPs, 1-dimensional

logF0, their corresponding delta and delta-delta features,

and 1-dimensional unvoiced/voiced information (259 di-

mension in total). The settings of the bottleneck network

and the network of text-to-articulatory prediction are the

same as DNN-BN-Arti.

• DNN-BN-Acoustic-MS: We use linguistic features and

acoustic features extracted from VCTK database to train

the bottleneck network, and here ’MS’ means multiple

speakers, as described in Section III (c). For the bottle-

neck network, the VCTK database2 is used to train the

model, which contains speech data from 103 speakers,

including 44 male and 59 female speakers. Each speaker

has around 400 utterances, and 41,294 sentences in total.

We take 40,294 randomly selected sentences for model

training, 500 randomly selected sentences as development

set and another 500 randomly selected sentences with

the 1262 utterances in MNGU0 database as test set.

The input and output features are the same as that of

bottleneck network in DNN-BN-Acoustic, which are 501-

dimensional binary features and 259-dimensional acous-

tic features respectively. There are 6 feed-forward hidden

layers, each of which has 1,536 hidden units, except that

the second hidden layer is set as bottleneck layer, with

32 hidden units. The settings of the network for text-to-

articulatory prediction are the same as DNN-BN-arti, so

the dimension of input layer is from 533 dimension to

1173 dimension.

The hyper-parameters (i.e., the number of hidden layers,

the number of hidden units, the learning rate) of all the neural

networks are tuned on the development set.

V. EXPERIMENTAL RESULTS

We employed a widely used objective measure, termed root

mean-squared error (RMSE), which is the same as [10], [15],

[20], to test different DNN systems:

RMSE =

√

1

N

∑

i

(ei − ti)2, (1)

where ei is the network output and ti is the actual value at time

i. Actually, RMSE is calculated dimension by dimension, and

then the average RMSE of 12 dimensions are used to assess

the performance of the models.

2http://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html

A. Effect of DNN in text-to-articulatory prediction

The prediction results of our DNN is shown in Table I.

We can see that using text-only as input in DNN has the

average RMSE of 0.7370mm, while in the recent HMM

approach [10] the average RMSE is 0.872mm. This means

DNN brings a clear RMSE reduction. Please note that the

comparison between these two methods is not direct, since

the exact allocation of training and test sets used in [10] is

not available. But we tried to keep the number of utterances

in the training/test sets similar with that in [10].

TABLE I
AVERAGE RMSE OF HMM, DNN AND DNN-BN-ARTI ON THE TEST SET.

HMM [10] DNN DNN-BN-Arti

rmse (mm) 0.872 0.7370 0.7203

TABLE II
AVERAGE RMSE OF DNN-BN-ARTI, DNN-BN-ACOUSTIC AND

DNN-BN-ACOUSTIC-MS ON THE TEST SET.

rmse (mm) stacked BN features (frames)

DNN-BN-Arti 0.7203 21

DNN-BN-Acoustic 0.7257 17

DNN-BN-Acoustic-MS 0.7243 13

the frame number of bottleneck features stacked with input
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Fig. 3. Comparison of three sources for bottleneck features in test set; RMSE
as a function of the number of stacked frames.

B. Effect of stacked bottleneck features

Fig. 3 shows the RMSE of three different stacked bottleneck

feature sources, as a function of the number of stacked frames,

while the best RMSE achieved are summarized in Tabel II.

We notice that no matter how the bottleneck network (the

right-hand network in Fig. 2) is trained and how many frames

are stacked, stacking contextual frames with text can include

richer linguistic information, and achieve better performance

than using text-only feature of the current frame. Among

these three sources of bottleneck features, DNN-BN-Arti,

which uses MNGU0 database and sets articulatory features

as output when training the bottleneck network, achieves the

best result. Besides, comparing DNN-BN-Acoustic with DNN-

BN-Acoustic-MS, which both use acoustic features as output

when training the bottleneck network, the average RMSE of



frames

0 100 200 300 400 500 600 700

lo
w

e
rl

ip
_

p
x

-0.2

-0.1

0

0.1

frames

0 100 200 300 400 500 600 700

lo
w

e
rl

ip
_

p
y

-1

-0.8

-0.6

-0.4

-0.2

Real

DNN

DNN-BN-Arti

Fig. 4. Comparison of real and predicted articulatory movements by DNN and DNN-BN-Arti. For lack of space, we only show two of the 12-dimensional
output in this figure. The top subgraph shows the lower lip movements on the x axis, and the bottom subgraph is on the y axis. The black solid line, the blue
dotted line and the red dashed line represent real data, predicted by DNN and predicted by DNN-BN-Arti, respectively.

DNN-BN-Acoustic-MS is lower, which shows that when the

acoustic data from the target speaker is limited, borrowing data

from another big corpus with multiple speakers helps. This

observation is consistent with that in [17], which uses stacked

bottleneck features for DNN-based text-to-speech synthesis.

We put the best RMSE achieved by DNN-BN-Arti in

Tabel I. We can see that a further 2.27% relative error reduc-

tion is achieved by stacking bottleneck features as compared

with an ordinary DNN. Fig. 4 shows the real and predicted

articulatory movements of two articulatory positions for an

utterance in the test set. We can see that the predicted trajec-

tories follow the real ones quite well. The red dashed line,

representing the predicted articulatory movements generated

by DNN-BN-Arti, seems to be more close to the real trajectory

shown in solid black line.

VI. CONCLUSIONS

In this paper, we boost the performance of articulatory

prediction from text on the MNGU0 corpus to a new level

by the use of deep neural network, which decreases RMSE

to 0.7370mm. Moreover, we manage to stack bottleneck

features as network input to capture the important contextual

information for DNN-based text-to-articulatory prediction. We

find that stacking bottleneck features can bring further RMSE

reduction. There is still a substantial amount of work to do

in the future. First, our recent work has shown that recurrent

neural networks show superior performance in articulatory in-

version [20]. Thus we plan to investigate RNN’s effectiveness

in text-to-articulatory prediction. Second, bottleneck features

can be used as supplement of acoustic features too, to improve

the performance of the articulatory inversion task.
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