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Abstract
We present a neural network based punctuation prediction
method using Long Short-Term Memory (LSTM) network. The
proposed method uses bidirectional LSTM to encode both the
past and future observation as its inputs. It models the depen-
dency between input features and output labels through multiple
layers. We also empirically study the impacts of modeling the
dependency between output labels. Our results show that using
a deep bi-directional LSTM is able to achieve state-of-the-art
performance in punctuation prediction.
Index Terms: punctuation prediction, long short term memory,
recurrent neural network, conditional random field

1. Introduction
A standard automatic speech recognizer (ASR) typically gener-
ates only a stream of words, without any punctuation symbols.
The missing punctuations make the transcripts difficult to read
and create barriers to many downstream language processing
tasks, such as sentiment analysis, information extraction and
machine translation (MT) [1, 2]. For example, various models
in current MT systems are trained on punctuated texts, and thus
for an acceptable level of quality in translation, those systems
expect correctly punctuated texts. Moreover, the output of MT
is expected to have correct punctuation in the output language as
well. Automatic punctuation prediction improves the readabil-
ity as well as facilitates subsequent tasks by inserting suitable
punctuation marks in the text.

A substantial amount of work has been done in punctuation
prediction and a related task named sentence boundary detec-
tion [3, 4], which only predicts sentence ends. Some previous
research explores both lexical and prosodic features [3, 4, 5, 6,
7, 8, 9]. However, acoustic signal may not be readily available
in real applications. In this paper, we address the punctuation
prediction problem solely from lexical input, i.e., restoring ma-
jor punctuation marks from an input stream of words.

Recently, neural networks have re-emerged as an power-
ful tool in many tasks. Specifically, with powerful sequential
learning ability, recurrent neural network (RNN) and its variants
have shown their superior performances in a variety of sequen-
tial labelling tasks, e.g., part-of-speech (POS) tagging, chunk-
ing and named entity recognition (NER) [10], prosodic bound-
ary prediction [11] and language understanding [12]. Punctua-
tion prediction can be regarded as a typical sequential labelling
task, i.e., label each inter-word position using an appropriate
punctuation mark (or non-punctuation). Recently, long short-
term memory (LSTM) was suggested for punctuation prediction
in [13]. LSTM-RNN uses specifically designed gates to control
information flow and thus has exceptional long context model-
ing ability. In [13], LSTM was used to model only past con-
textual inputs. But we believe that punctuation labeling might

be more accurate if both the past and future contexts are both
considered. What follows affects the current decision on the
punctuation. Meanwhile, Tilk et al. only use one LSTM lay-
er in punctuation prediction [13]. Recent studies suggest that
using multiple hidden layers can learn hierarchical features and
boost the performance [14]. On the other hand, studies in var-
ious sequential labeling tasks [10, 11, 12] have also indicated
that using a conditional random fields (CRF) layer on top of
LSTM can catch the output context information, leading to fur-
ther performance gain.

This paper performs an extensive study on the use of LST-
M for punctuation prediction. Our contributions can be sum-
marized as follows. 1) We propose to use bidirectional LSTM
(BLSTM) and deep network architecture to consider the both
past and future inputs as well as to model the complex rela-
tionships between input feature and output labels. 2) We in-
vestigate whether modeling the context of output punctuation
labels, through a CRF layer, can achieve performance gain for
punctuation prediction, as expected in other sequential labelling
tasks. 3) Our study concludes that a 2-layer BLSTM model can
produce state-of-the-art performance in punctuation prediction,
while modeling output contexts does not lead to improved per-
formances.

2. Related Work
Punctuation prediction and its related tasks have been studied in
the speech and language processing field for many years. Ac-
cording to the features used, we can roughly divide previous s-
tudies into two types: one only uses lexical features (words and
N-grams, etc.), such as [15, 16, 17]; the other integrates both
lexical and prosodic features (pause duration and pitch, etc.),
such as [3, 4, 5, 6, 7, 8, 9]. Based on the above features, a va-
riety of models can be used, including language model (LM),
maximum entropy model (Maxent), statistical finite state, CRF,
decision tree (DT) and neural networks (NN).

As an early approach, Beeferman et al. [15] studied a tri-
gram LM for punctuation annotation for speech transcripts. As
another popular approach, hidden event LM treats sentence
boundary and punctuation as target events [5], where prosod-
ic and LM cues are modeled by DT and N-gram, respectively,
and subsequently integrated in a hidden event LM. Also, punc-
tuation prediction is jointed addressed with other tasks, e.g.,
in [16], an N-gram model simultaneously predicts punctuation
and case information for English.

Punctuation prediction can be treated as a sequence la-
belling task and tackled by CRF [3, 18]. Liu et al. [3] have
shown that a linear chain CRF yields a lower error rate than H-
MM and Maxent on the NIST sentence boundary detection task.
They owe the performance gain to CRF’s abilities to directly
estimate the posterior boundary label probabilities, to support



simultaneous correlated features and to model sequence infor-
mation. Wang et al. [9] have adopted a dynamic CRF [17],
which connects variables in different layers by introducing a
pairwise factor, to jointly perform sentence boundary detection
and punctuation prediction using lexical and prosodic features.

Neural networks offer a flexible architecture to construct
complex models. Recently, a deep neural network (DNN) ap-
proach was proposed in [4] for sentence boundary detection.
Recurrent networks, such as LSTM models, are able to model
sequential information. Tilk et al. [13] have recently proposed
a two-stage LSTM model to predict punctuations. An LSTM
learns lexical features on a large text corpus in the first stage.
The second stage combines pause durations with lexical fea-
tures and adapts the model to the target domain.

3. Methods
3.1. LSTM

Allowing cyclical connections in a feed-forward neural net-
work, we obtain recurrent neural networks (RNNs). RNNs have
recently produced outstanding performances on many tasks in-
cluding sequential labelling [19] and language modeling [20].
In theory, RNN can learn from the entire historical inputs. But
in practice, it can access only a limited range of context because
of the vanishing gradient problem. Long short-term memory
(LSTM) [21] uses purpose-built memory cells to store infor-
mation, which is designed to overcome this problem. LSTM
is composed of a set of recurrently connected memory blocks
and each block consists of one or more self-connected memory
cells and three multiplicative gates, i.e., input gate, forget gate
and output gate. The three gates are designed to capture long-
range contextual information by using nonlinear summation u-
nits. Specifically, in this study, we use the LSTM with forget
gates [22] and peephole connections [23] to predict punctua-
tion, which is theoretically implemented as follows.

it = σ(W xixt +W hiht−1 +W cict−1 + bi)

f t = σ(W xfxt +W hfht−1 +W cfct−1 + bf )

ct = f t ⊙ ct−1 + it ⊙ tanh(W xcxt +W hcht−1 + bc)

ot = σ(W xoxt +W hoht−1 +W coct + bo)

ht = ot ⊙ tanh(ct)
(1)

where xt is the input vector encoded in one-hot scheme; σ is
the element-wise logistic sigmoid function; i, f , o and c de-
note the input gate, forget gate, output gate and memory cell,
respectively, and all of them are the same size as the LSTM out-
put vector h; W xi is the input-input gate matrix, W hc is the
hidden-cell matrix, and so on; ⊙ is the element-wise product.

3.2. Deep bidirectional LSTM

Figure 1 shows the proposed bidirectional LSTM (BLSTM) ar-
chitecture for punctuation prediction. BLSTM consists of a for-
ward LSTM and a backward LSTM [24]. Given an input se-
quence (x1,x2, . . . ,xn), the forward LSTM reads it from left
to right, but the backward LSTM reads it in a reverse order.
The two LSTMs have different parameters. Apparently, BLST-
M can utilize both past inputs and future inputs for a specific
time.
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Figure 1: Multi-layer bidirectional LSTM for punctuation pre-
diction.

3.3. LSTM-CRF

LSTM networks can use contextual inputs features, but for tasks
that have strong dependencies across output labels, they lack
capacity to model output label information. As we discussed in
Section 2, CRF can use sentence-level label information and it
is widely used in sequence labelling tasks [25]. Recent studies
have shown that, a hybrid LSTM-CRF model yields exceptional
performance in tasks like POS tagging, chunking and named en-
tity recognition, where strong relationships exist between out-
put labels [10, 26].

In an LSTM-CRF model, illustrated in Figure 2, a CR-
F layer is sitting on top of a LSTM layer and its parameter-
s is a transition matrix. For a given input sequence X =
(x1,x2, . . . ,xn) and the corresponding prediction sequence
Y = (y1, y2, . . . , yn), the score of the sequence is defined as

s(X,Y ) =

n∑
i=0

Ayi,yi+1 +

n∑
i=1

Pi,yi , (2)

where P is the matrix of score outputted by the LSTM layer
and Pi,yi denotes the score of the yi-th label of the i-th word
in a sequence; A is the transition matrix generated by the CRF
layer and it is position independent, and Ai,j denotes the score
of a transition from the label i to label j; y0 and yn represent
the start and end labels of a sequence, respectively.

Since LSTM-CRF only models bigram information be-
tween output labels, the dynamic programming algorithm can
be effectively used to compute A and optimal label sequences
for inference. Readers may refer to [25, 26] for more details.

As we mentioned above, BLSTM can adopt both past and
future inputs, so we can replace the LSTM layer in LSTM-CRF
model with a BLSTM layer to form a BLSTM-CRF model.
Thus this model can use past inputs, future inputs and sentence
level label information for punctuation prediction.



Table 1: Punctuation prediction results of different LSTM models. C: comma; P: period.

Model prec.(C) rec.(C) F1(C) prec.(P) rec.(P) F1(P)
CRF-unigram 72.69 62.12 66.99 77.62 63.22 69.68
LSTM 71.80 63.62 67.46 68.67 68.85 68.76
2layer-LSTM 71.71 68.89 70.27 76.22 65.70 70.57
BLSTM 74.70 74.81 74.76 80.97 69.75 74.94
2layer-BLSTM 77.99 72.30 75.04 76.77 75.71 76.23

Table 2: Punctuation prediction results for models with and without output label context information. C: comma; P: period

Model prec.(C) rec.(C) F1(C) prec.(P) rec.(P) F1(P)
LSTM 71.80 63.62 67.46 68.67 68.85 68.76
LSTM-CRF 61.98 51.72 56.39 69.08 58.15 63.15
BLSTM 74.70 74.81 74.76 80.97 69.75 74.94
BLSTM-CRF 68.62 63.09 65.74 72.42 67.48 69.86
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Figure 2: Bidirectional LSTM with a CRF layer for punctuation
prediction.

3.4. Task and Input

In this paper, given an input sequence of words, we label each
word based on the punctuation before this word. Specifically,
we label each word with comma, period and non-punctuation.
Our punctuation prediction only relies on lexical information,
or simply word identities. Hence it works on pure texts with-
out accessing to the speech waveforms (e.g., to extract prosodic
features).

We encode each word in a one-hot scheme, and use an em-
bedding layer as LSTM network input. The embedding layer
connects the one-hot input and the subsequent LSTM layer, and
it consists of a weight matrix W e which will be updated in the
whole network training procedure. The embedding layer works
as follows: assume the size of vocabulary is n and the dimen-
sion of embedding layer is m. Then the weight matrix W e of
the embedding layer is of size n × m (Wij is the weight of
connection from unit i to unit j). When the input word’s in-
dex is i, the embedding layer will pass the i-th row of W e to
the subsequent LSTM layer. That is, it acts like a lookup-table,
making the training procedure more efficient. Furthermore, it

efficiently represents each word with a number that is the in-
dex of this word in a prepared vocabulary. Because when the
training data is large, directly representing each word with a
high-dimensional one-hot vector is impractical and a waste of
storage space.

4. Experiments
4.1. Data

We use Chinese texts from People’s Daily to do the experi-
ments. The training dataset contains 275,000 sentences and
17.5M words in total, while the test data set contains 34,600
sentences and around 0.2M words in total. The size of valida-
tion data set is similar to test data set. We focus on the pre-
diction of two most common types of punctuation: comma and
period. Thus we map question and exclamation marks to peri-
ods, replace colon and semicolon with commas, and remove all
other punctuation symbols from the corpus. We use the Mecab
toolkit [27] to do the word segmentation.

4.2. Metrics

We evaluate the punctuation prediction performance by preci-
sion (prec.), recall (rec.), and their harmonic mean—F1-score
(F1). We report these metrics for commas and periods, respec-
tively, on the test set.

4.3. Experimental setup

We carry out two sessions of experimentation. The first session
is designed to test LSTM and BLSTM with one or two hid-
den layers, which aims to see if considering the both past and
future inputs and using a deeper model can improve the perfor-
mance. The second session is to investigate whether modeling
the context of output punctuation labels, through a CRF layer,
can achieve performance gain. We train all the LSTM network-
s using the back-propagation algorithm. Network weights are
updated for every training example using Adadelta with a de-
cay rate of 0.95 and a constant of 1e-6. In all the networks, each
LSTM layer consists of 100 single-cell LSTM blocks. Between
the word input and the LSTM layer, we add an embedding layer
whose dimension is set to 100 empirically. The input vocabu-
lary consists of the 100K most frequent Chinese words and two
special symbols—one for unknown words and the other for the
end of input.



Table 3: Punctuation prediction results for CRFs with and without output label context information. C: comma; P: period.

Model prec.(C) rec.(C) F1(C) prec.(P) rec.(P) F1(P)
CRF-unigram 72.69 62.12 66.99 77.62 63.22 69.68
CRF-bigram 71.30 62.58 66.65 78.04 62.32 69.30

We use CRF++ toolkit [28] to build a CRF-based punctu-
ation predictor as a baseline. All the CRF models used in this
paper is a linear-chain CRF. The baseline CRF model, named
CRF-unigram, considers an input context window size of 5 (pre-
vious two words, current word and future two words) without
adding output label context information.

4.4. LSTM results

Table 1 presents the evaluation results for the LSTM models.
We notice that BLSTM improves F1 by 10.82% and 8.99%, in
predicting commas and periods respectively, as compared with
LSTM. This result supports our view that both past and future
contexts are useful for punctuation prediction, and BLSTM is a
superior architecture in this task.

When comparing two-layer models with single-layer mod-
els, we observe that using more hidden layers helps. For ex-
ample, a 2layer-LSTM achieves about 4.17% relative F1 gain
for comma prediction, as compared with a single layer LSTM.
We believe that the performance may be further improved when
more layers are used, but training such models would be very
time-consuming. Finally, the 2-layer BLSTM model achieves
the best performance in punctuation prediction. It improves F1

by 12.02% relative over CRF-unigram (baseline) and 11.24%
relative over LSTM in predicting commas; it improves F1 by
9.40% relative over CRF-unigram (baseline) and 10.86% rela-
tive over LSTM in predicting periods.

4.5. LSTM-CRF results

Table 2 summarizes the experimental results for LSTM models
with and without output label context information. Surprising-
ly, we can clearly see that adding a CRF layer to model out-
put context significantly decreases the performance, for both L-
STM and BLSTM. This observation shows inconsistency with
other sequential labeling tasks, e.g., NER [10, 26] and POS tag-
ging [10], where the addition of a CRF layer clearly boosts the
performance. We believe that the difference may come from the
nature of the specific tasks. For POS tagging, which gives every
word a POS tag (e.g., noun, verb, adjective, ...), the numbers
of different labels are relatively balanced due to the language
rules. For instance, two verbs can be neighbors. Restricted by
the grammars, more importantly, the decision on the current tag
is highly related to the previous and future tags. On the con-
trary, punctuation prediction is a highly label imbalanced task:
most output labels are not punctuation. Specially in our corpus,
the proportion of non-punctuation and punctuation is 85% ver-
sus 15%. Thus the CRF layer may learn more knowledge about
transiting from non-punctuation to non-punctuation, and it will
be more likely to predict the output label to be non-punctuation.

To validate the above hypothesis, we perform a sanity check
on CRF. Specifically, we train a CRF-bigram model, which has
the same input with CRF-unigram but also uses the previous
output label and the current label as a bigram feature. Results
in Table 3 show that apparent F1 degradation is achieved by
CRF-bigram. This sanity check confirms our hypothesis.

5. Conclusions
In this paper, we have compared the performance of a variety
of LSTM based models for punctuation prediction. Our conclu-
sions are as follows. 1) By modeling both past and future con-
texts of inputs, bidirectional LSTM significantly outperforms
unidirectional LSTM. 2) A two-layer LSTM outperforms a sin-
gle layer LSTM. 3) Modeling the output label dependences, by
the addition of a CRF layer on top of an LSTM or BLSTM, does
not improve performance on top of BLSTM. We have observed
23% and 24% relative reduction of errors, F1 improved from
67.46 to 75.04 and from 68.76 to 76.23 for comma and period
predictions, using 2-layer BLSTM models, in comparison to the
baseline LSTM (the relative error rate reduction is computed as

(y−x)
(100.0−x)

× 100.0).
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