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ABSTRACT

A second language (L2) learner usually cannot speak L2
well in both pronunciations and forming-of-words. Hence
his/her L2 speech cannot be well recognized by a recognizer
trained with native data. Domain adversarial training (DAT),
capable of reducing the acoustic mismatch between training
and testing, can be useful for improving speech recognition
of L2 learners. To get around the ungrammatical L2 speech
in scenario-based conversation training, keyword spotting
(KWS) is an effective solution by relaxing the language
model constraint in decoding. On the acoustic pronunciation
side, DAT is investigated in this study for training a neu-
ral net-based acoustic model. DAT model is trained with
both native and English as second language (ESL) learners’
speech to extract more invariant features from native to ESL
speech by equalizing their intrinsic difference. The model
is jointly optimized for improved senone classification in
training. Testing on ESL learners’ speech and native English,
the DAT model improves recognition performance which is
comparable to jointly trained multi-condition model but sig-
nificantly improves the performance of native speech recog-
nition. In KWS, DAT shows a consistent better performance
than the multi-condition training. The improved performance
of proposed model is also obtained without increasing its
computation complexity or the model size.

Index Terms— Domain adversarial training, CALL,
ESL, ASR, Keyword spotting

1. INTRODUCTION

Computer assisted language learning (CALL) system has be-
come a convenient and effective tool for learning a new lan-
guage. For better user experience of CALL, it is highly de-
sirable to customize the learning program for each learner,
based upon his/her progress and the data accumulated over the
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learning period. In a scenario-based conversation practice, a
second language (L2) learner can benefit more from the inter-
active conversations. However, it is difficult to continue the
conversation if a decent speech recognizer is not available. To
recognize an L2 learner’s speech well is therefore crucial to
the success of a CALL system in L2 learning.

However, in CALL applications, good speech recognition
performance is not guaranteed in conventional speech recog-
nition system, as the acoustic model (AM) is trained with
speech data of native speakers and the n-gram language model
(LM) is trained with the common usage of the words and
word relation statistics. Both do not match well with an L2
learner’s sentence. Keyword spotting (KWS) is a convenient
choice to relax the LM in decoding, e.g. a lattice-based (or
phoneme/word graph-based) KWS [1, 2, 3] is the choice of
this study. The lattice can be generated with a large vocabu-
lary continuous speech recognition (LVCSR) system first, fol-
lowed with a scoring process. Word posteriors [4] are used to
evaluate whether a keyword is included in an input utterance.

Unlike ordinary KWS, recognizing L2 learners’ speech
and detecting keywords from it have many challenges due to
possibly his/her pronunciation deficiency and adverse acous-
tic environments at sound pickup. Consequently, the L2 learn-
ers’ speech can be highly different from the speaker indepen-
dent, continuous speech databases recorded by native speak-
ers. There are ways to reduce the acoustic mismatches be-
tween them. The most direct ones are multi-condition train-
ing [5] and transfer learning [6, 7]. In multi-condition train-
ing, data from different distributions are mixed to train a new
model which usually works well in many scenarios. Trans-
fer learning can adjust a well-trained model with respect to a
different distribution of a new dataset. However, the perfor-
mance on data with the original distribution will be degraded
in general for transfer learning trained model.

Recently, Ganin et al. [8, 9] proposed an unsupervised do-
main adversarial training (DAT) to tackle the data mismatch
problem by learning domain-invariant features. DAT has
achieved the state-of-the-art results for a few unsupervised
domain adaptation tasks in computer visions [10, 11]. Sun et
al. [12] and Wang et al. [13] have successfully applied it to



robust speech and speaker recognition. DAT is also applied
to supervised learning, e.g. face recognition [14, 15], noisy
speech recognition [16] and accented speech recognition [17].

In this paper, we apply supervised DAT to acoustic model
(AM) training with data collected from both English as sec-
ond language (ESL) learners and native English speakers.
Speech recognition and keyword spotting are used to evaluate
the proposed approach. We have investigated DAT, transfer
learning and multi-condition training in training time-delay
neural network (TDNN) [18] AMs with native English speech
and/or ESL speech. The experimental results show that multi-
condition and DAT are better than other methods in dealing
with speech with different pronunciation deficiencies. Testing
on ESL learners speech with different proficiency levels and
native English, the DAT model improves recognition perfor-
mance which is comparable to jointly trained multi-condition
model but significantly improves the performance of native
speech recognition with an 18.5% relative WER reduction.
For keyword spotting, DAT model yields consistent better
performances than the multi-condition model for different
lattice beam width settings on all test sets.

2. ACOUSTIC MODELING FOR ESL LEARNERS’
SPEECH USING DAT

2.1. Domain-invariant feature representation

We have two datasets from two different domains: S1

from native English speech domain and S2 from first lan-
guage (L1) Chinese non-native English speech domain.
S1 = {xi, yi}|S1|

i=1 and S2 = {xi, yi}|S2|
i=1 , where xi∈X is

speech feature and yi∈Y is the corresponding HMM senone
label. Normally, an AM learns the distribution D(x, y) on
X⊗Y . However, the distribution D(x, y) may be different
between two different domains of data sets. Assume there
are two distributions D1(x, y) and D2(x, y) corresponding
to two different domains, these two distributions are differ-
ent mostly because of the different marginal distribution of
D1(x) and D2(x). The basic idea of DAT is to learn a feature
mapping, f = F (x) to map the x to a domain-invariant space
V . In space V , the mismatch between the two domains is
reduced. Then the AM only needs to learn a more uniform
distribution Q(f, y) on V⊗Y and the AM could recognize
them better.

As shown in Fig. 1, the DAT network consists of three
sub networks: M1(x, θ1), M2(f, θ2) and M3(f, θ3). The
M1(x, θ1) here is called a feature extractor, which takes
speech x from different domains as input and outputs the
domain-invariant feature f , where θ1 is the parameters of
M1. M2(f, θ2) is a senone classification network whose in-
put is f and its parameters are represented by θ2. M3(f, θ3)
is a domain classification network with f as input and θ3 as
parameters.
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Fig. 1. Domain adversarial training

2.2. DAT via back propagation

Assuming there are N training examples in each mini-batch,
the object function is defined as follows:

E(θ1, θ2, θ3) =

N∑
i=1

L1(M2(M1(xi; θ1); θ2), yi)

− λ
N∑
i=1

L2(M3(M1(xi; θ1); θ3), di) (1)

Here, L1(., .) is the cross-entropy loss function for senone
classification, di is the domain label of i-th training sample,
L2(., .) is the cross-entropy loss function for domain classifi-
cation. Unlike [17], non-speech parts in the data are also used
for training, since in our task, there is not only accent mis-
match but also channel mismatch between the two domains.
λ is a hyper parameter of DAT and is positive.

Then DAT can be viewed as two optimization problems:

(θ1, θ2) = argmin
(θ1,θ2)

E(θ1, θ2, θ3) (2)

θ3 = argmax
θ3

E(θ1, θ2, θ3) (3)

Above equation 2, 3 mean that we want to optimize our net-
works M1 and M2 so that the network can discriminate dif-
ferent senones while making the network generated features
f that can not be determined by M3 which domain it is from.
At the same time, the M3 is optimized to distinguish which
domain the data comes from. The model parameters can be
updated with back propagation as stochastic gradient descent:

θ1 ← θ1 − α
1

N

N∑
i=1

(
∂L1(y

′

i, yi)

∂θ1
− λ∂L2(d

′

i, di)

∂θ1
) (4)



θ2 ← θ2 − α
1

N

N∑
i=1

∂L1(y
′

i, yi)

∂θ2
(5)

θ3 ← θ3 − α
1

N

N∑
i=1

∂L1(d
′

i, di)

∂θ3
(6)

where α is the learning rate, y
′

i and d
′

i are the predicted senone
and domain labels, respectively. In practice, to achieve this,
we have implemented a gradient reverse layer (GRL) [8] as
shown in Fig. 1. This layer will scale the gradient by −λ
when the gradient propagates backward while do nothing dur-
ing forward propagation.

3. EXPERIMENTAL SETUP

3.1. Database

Same as our previous work [19], two databases are used to
train the AMs. One is a native speakers’ speech database,
i.e. switchboard (SWBD). The other one is an ESL speech
database, denoted as ‘Xiaoying’. They have 282 hrs and 160
hrs respectively.

We collect an extra Xiaoying data set for testing differ-
ent AMs, 2691 utterances in total and by non-native English
learners with different proficiencies. There is no overlapping
of sentence transcription and speaker between the training and
testing Xiaoying databases. To test the sensitivity of our ASR
and KWS systems to users’ English proficiency, we divide
the above testing database into three groups, i.e., G1, G2 and
G3 [19], according to its utterance level pronunciation score
evaluated by the pronunciation scoring algorithm described
in [20]. Different from [19], in this work, 500 native speech
utterances are also collected for testing, denoted as G4. G4,
collected from native speakers (read speech with very stan-
dard pronunciation), contains all the sentences in above three
test sets. The detail information of four test groups is listed in
Table 1. To better distinguish different search data sets, there
are discontinuities in the score ranges for the four groups, e.g.,
the utterances with scores between 31-39 and 56-64 are dis-
carded. 60 keywords, identical to [19], are selected for the
KWS task and each word contains at least 2 syllables or 5
phonemes. To show the difficulty of searching keywords in
each test group, the priors are calculated as the averaged oc-
currences of each keyword in each group of testing set (last
column in Table 1). More detailed information about the Xi-
aoying data and selected keywords can be found in section 3.1
of [19].

Table 1. Details of four search data sets
score
range

speaker
type #utt avg

length (s) prior (%)

G1 15-30 non-native 866 4.7 0.64
G2 40-55 non-native 953 5.1 0.81
G3 65-80 non-native 872 4.8 0.74
G4 native 500 4.9 0.90

3.2. Acoustic models

We have tried five different methods for AM training:

• SWBD: only native data SWBD used;

• Xiaoying: only non-native data Xiaoying used;

• Transfer learning: trained with SWBD, fine tuned
with Xiaoying;

• Multi-condition: trained with SWBD and Xiaoying
mix;

• DAT: similar to multi-condition training, SWBD and
Xiaoying are assigned different domain labels used for
DAT.

For the first four methods, we train TDNN AMs with 6
hidden layers, each with 1024 nodes and ReLU activation
function. From the first hidden layer to the output layer, we
splice frames at offsets of {-2,-1,0,1,2}, {-1,2}, {-3,3}, {-
7,2}, {0} and {0}. 36-dimensional filter bank features are
used as network input. The output consisted of 8,816 softmax
nodes, corresponding to the # senones of the AM. Kaldi [21]
nnet3 training method is used to train our network. For the
DAT network, the acoustic part (M1+M2) is exactly the same
as the above network. The difference is that we take the out-
put of the 5-th hidden layer of the network as input to M3

(a hyper-parameter set to 5, by following [12, 17]), which is
a fully connected network with two hidden layers, each with
512 ReLU activation nodes. The G3 has two softmax output
nodes, for the two different domains. The hyper-parameter λ
in section 2.2 is set to 0.5 (we have tried different settings,
from 0.1 to 0.8, and 0.5 got the best results). It is important
to note that the same two datasets were used for training the
multi-condition model and the DAT model. We disconnect
M3 from the DAT network in inference (testing), hence the
computational complexities remain the same. A 3-gram lan-
guage model trained with the SWBD transcriptions is used
for decoding.

3.3. Alignment of Xiaoying data

We first aligned the SWBD data with the GMM-HMM model
and trained a TDNN AM with the SWBD data. Then we
aligned the Xiaoying data with the SWBD TDNN model. Fi-
nally, we used above aligned SWBD and Xiaoying data to
train a multi-condition TDNN model and used this model to
realign all training data. All models mentioned in Sec. 3.2 are
trained with the realigned data.

WER is used to evaluate the performance of different ASR
systems. To evaluate the performance of different KWS sys-
tems, two metrics are used, i.e., the Mean Average Precision
(MAP) and Mean Precision at N (MP@N), where the AP and
P@N are defined as:

• AP: Averaged precision at the true hit utterance posi-
tion over all ranked utterances;



Table 2. WERs (%) of different LVCSR systems, numbers in
the parentheses (last column) are relative improvements (%)
compared to the multi-condition method.

SWBD Xiaoying Transfer
learning

Multi-
condition

DAT
(λ = 0.5)

G1 99.99 56.29 54.30 52.91 53.96 (-1.98)
G2 89.39 38.25 36.41 35.70 35.83 (-0.04)
G3 70.02 28.68 26.59 25.57 25.01 ( 2.19)
G4 14.27 32.11 25.17 15.77 12.85 (18.52)

• P@N:Top N precision of the returned ranked list; N is
the number of utterances that contain the keyword.

4. EXPERIMENTAL RESULTS

4.1. Speech recognition results of different AMs

Table 2 shows speech recognition results of different AMs
on all test sets. As the level of pronunciation (rated by the
corresponding pronunciation score) improves from G1 to G4,
WER decreases on all ASR systems. When the model was
trained with the SWBD data only, the performance of G4, the
native test set is good. However, poorer WERs are obtained
on the dataset from G1 to G3, due to the corresponding mis-
match level with the native AM model. For the model trained
by Xiaoying data, there is a considerable improvement on G1
to G3 over the SWBD model but deteriorates the G4 perfor-
mance significantly since Xiaoying data contains mostly mis-
matched ESL speech. Thirdly, the transfer learning model,
multi-condition model and DAT model outperformed the Xi-
aoying model on G1 to G3 datasets, and they were compa-
rable to each other on the three test sets. Compared with
the multi-condition model, DAT model achieved 2.19% and
18.52% relative WER improvements on G3 and G4 while
minimally degraded performance on G1 and G2 (relatively
1.98% and 0.04% increasing of WER).

4.2. Keyword search results of different acoustic models

Similarly, we carried out KWS experiments with different
ASR systems on the four test sets, and the results in table 3
were similar to the recognition experiments (systems with
high recognition accuracy performed well on KWS tasks,
too). We focus on the result differences between the multi-
condition model and the DAT model since they are the two
best performed models in speech recognition. Experimental
results showed that the DAT model performed better than
multi-condition model in KWS on all test sets. Especially,
in the MP@N metric, we observed more improvement on all
test sets.

In the last experiment, we compared DAT model and
multi-condition model with different lattice beam settings.
Lattice beam plays a key role in the scoring process of KWS
by controlling the size of the data to store and transmit, hence
affects the response latency of keyword spotting, a crucial

Table 3. Performance comparison of different KWS systems
SWBD Xiaoying Transfer

learning
Multi-

condition
DAT

(λ = 0.5)

MAPs
G1 0.129 0.749 0.785 0.796 0.802
G2 0.291 0.865 0.870 0.902 0.903
G3 0.631 0.937 0.956 0.953 0.958
G4 0.990 0.915 0.944 0.988 0.989

MP@Ns
G1 0.128 0.711 0.752 0.746 0.760
G2 0.329 0.826 0.851 0.868 0.877
G3 0.605 0.915 0.931 0.927 0.930
G4 0.985 0.893 0.926 0.979 0.985
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Fig. 2. Performance comparison of DAT and multi-condition
based KWS systems with different lattice beam

indicator in real-time applications. From Fig. 2, we can see
that with the increase of lattice beam width, the performance
of DAT model and multi-condition model on each dataset
is improved, and the results saturate at a beam width of 9.
Moreover, under all tested beam width, the DAT model per-
forms consistently better than the multi-condition model. We
also observed that the gap between them are larger at smaller
lattice beam width, indicating that DAT tended to outperform
with a small lattice beam setting.

5. CONCLUSIONS

We propose DAT to recognize L2 learners’ speech in both
speech recognition and keyword spotting applications. DAT
adjusts the model parameters of three modules jointly in AM
training, including: a feature extraction module for finding
domain-invariant features; a discriminative senone classifica-
tion module for improved phonetic recognition; and a domain
classification module to classify which domain of the input
data is from. DAT uses mixed-domain data, i.e., native speak-
ers’ speech and ESL speech from Microsoft mTutor English
learning on-line service. Compared with other baseline sys-
tems trained on the same data sets, DAT model yields a bet-
ter performance by learning the domain-invariant features for
highly discriminative phonetic recognition.
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