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ABSTRACT

In this paper, we aim at improving the performance of synthe-

sized speech in statistical parametric speech synthesis (SPSS)

based on a generative adversarial network (GAN). In particu-

lar, we propose a novel architecture combining the tradition-

al acoustic loss function and the GAN’s discriminative loss

under a multi-task learning (MTL) framework. The mean

squared error (MSE) is usually used to estimate the param-

eters of deep neural networks, which only considers the nu-

merical difference between the raw audio and the synthesized

one. To mitigate this problem, we introduce the GAN as a

second task to determine if the input is a natural speech with

specific conditions. In this MTL framework, the MSE opti-

mization improves the stability of GAN, and at the same time

GAN produces samples with a distribution closer to natural

speech. Listening tests show that the multi-task architecture

can generate more natural speech that satisfies human percep-

tion than the conventional methods.

Index Terms— Statistical parametric speech synthesis,

deep neural network, generative adversarial network, condi-

tional generative adversarial network, multi-task learning

1. INTRODUCTION

Statistical parametric speech synthesis (SPSS) has attract-

ed significant attentions since the successful use of hidden

Markov models (HMMs) [1, 2, 3]. In HMM based systems,

Gaussian mixture model (GMM) was used to model the hid-

den states of observations. Considering the limitations of the

decision tree clustering procedure in modeling the complex

context dependencies in HMM-based statistical parametric

speech synthesis [4, 5], deep neural networks (DNNs) have

been proposed for acoustic modeling, which can produce

more natural synthesized speech [4, 6]. More recently, ad-

vanced estimation criteria and novel network architectures
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have been introduced to further improve the performance of

SPSS [7, 8, 9, 10, 11].

Since the purpose of training in the statistical method-

s is to maximize the likelihood or specifically to minimize

the mean square error (MSE) between the synthesized (i.e.,

network outputs) and the original speech parameters in neural

network based Text-to-Speech (TTS), the synthesized speech

may achieve suboptimal human perceptual level. Hence there

is an underlying reasonable-but-not-necessarily-optimal hy-

pothesis that the most natural synthesized speech has the min-

imal value in the numerical loss, which may fall into the per-

ceptual deficiency problem. In other words, the reduction in

numerical errors may not necessarily lead to better perceived

speech [12]. In this paper, we propose to use generative ad-

versarial networks (GANs) [13] to remedy this deficiency.

Significant efforts have been made to remedy the percep-

tual deficiency problem by improving the training criteria [14,

15, 16, 17]. In [14], by incorporating the whole sequence pa-

rameters into training, the sequence generation error (SGE)

minimization was proposed to eliminate the mismatch be-

tween training and testing. Considering the independence of

frames in DNNs, the minimum trajectory error training was

adopted to take into account the dynamic constraints from

a wide acoustic context during training [15]. In SPSS, the

speech features must be invertible for reconstruction through

a vocoder, and this rules out the use of many perceptual rep-

resentations of speech that can not be reconstructed to speech

waveform. Hence one solution to the perceptual suboptimal-

ity issue is to bring more representative perceptual features

into acoustic modeling [12]. In [12], under a multi-task learn-

ing (MTL) framework, along with the invertible spectral fea-

ture used in the vocoder, extra perceptual representations of

speech, e.g., spectro-temporal excitation pattern, were includ-

ed as a second prediction target in DNN-based SPSS.

In this paper, we propose to use GANs to solve the per-

ceptual deficiency problem in acoustic modeling. GAN is a

powerful generative model that has been successfully used in

image generation [13, 18, 19] and other tasks [20, 21]. It con-

sists of a generator G, which is treated as an acoustic model in



our framework to generate speech, and a discriminator D for

discriminating the generated speech and the genuine speech.

Specifically, the objective of G is to capture the distribution

of the natural speech, while D aids the training of G by ex-

amining the data generated by G in reference to real data, and

hence helping G learn the distribution that underpins the re-

al data [13]. In our framework, GAN naturally addresses the

perceptual deficiency problem: the updating of the generator

is not directly from the data samples, while it comes from the

back propagation of the discriminator. This means D can cap-

ture the essential difference between the natural speech and

the synthesized speech and this ‘perceptual’ difference is used

to guide G, the generator. Considering the mode collapse

problem of the generated samples in GAN [18], we take con-

ditional linguistic features as a guidance to control the gen-

eration process. Moreover, since the gradients of GANs are

not stable, we also use the conventional MSE loss function

to stabilize the training process. More specifically, inspired

by [16, 12, 22, 23], we combine the MSE loss with the GAN

loss under an MTL framework. The objective experiments

show that our framework has comparable performance in nu-

merical loss compared to the baseline BLSTM-based TTS,

while promisingly, the subjective listening experiments indi-

cate that the proposed architecture achieves significant im-

provement. That is, the proposed GAN approach results in

better perceptual speech quality.

2. RELATED WORKS

We notice that there are several recent attempts of using

GANs to improve the quality of synthesized speech. In [24],

GAN was treated as a post-filter for acoustic models to

overcome the over-smoothing problem. Specifically, natu-

ral speech was used as a conditional guidance of GAN, which

tries to reproduce the natural speech texture from the syn-

thesized one. In [25], variational autoencoding Wasserstein

GAN (VAW-GAN) was proposed to build a voice conversion

system from unaligned data, in which the GAN objective

was incorporated into the decoder to improve the conditional

variational autoencoder (C-VAE).

Our approach shares a similar idea with [16]. In order

to compensate the difference between the synthesized speech

and the natural speech in acoustic modeling, an Anti-Spoofing

Verification (ASV) module (like the discriminator in GAN)

was introduced to distinguish between the natural and the syn-

thetic speech. The speech generator has no difference with a

typical neural network acoustic model [4], i.e., learning a non-

linear mapping from linguistic features to speech parameters,

but the ASV discrimination loss was combined with the min-

imal generation error (MGE) loss, under an MTL framework,

to train the network.

It is noted that our approach is different from [16] in terms

of motivation and implementation. Instead of addressing the

over-smoothed problem with additional ASV constraint as

compensation, we propose to use GANs to directly produce

speech samples with closer distribution to natural speech from

a uniformly random noise distribution. In other words, the in-

put of our speech generator is random noise, while linguistic

features are introduced to both the generator and the discrim-

inator as conditions. As such, the prior uniformly random

noise distribution creates new samples that approximate the

training data distribution, and it brings diversity with con-

ditions to the synthesized speech from the generator while

the linguistic conditions add direct linguistic-discriminative

information to the discriminator. On the other hand, as the

Nash equilibrium is hard to achieve in network estimation,

the training process becomes unstable during the adversari-

al game. To tackle this problem, we take other optimization

methods, such as variational auto-encoder [22] or MSE, to

restrain the process. Finally, in our implementation, we use

state-of-the-art BLSTM network as a benchmark, which can

produce speech with much better quality than feed-forward

networks used in [16].

3. GAN-BASED MULTI-TASK LEARNING

Fig. 1 illustrates the architecture of the proposed GAN-based

MTL framework, which consists of a Generator and a Dis-

criminator. In the training process, different from [16], we

use random noise as the input of Generator, and introduce

the linguistic features to each hidden layer as the condition-

al information. Then the Generator can produce the synthe-

sized speech, with which the Discriminator can distinguish

between the synthesized speech and the natural speech under

the same conditions. The estimation of this process is made

up of two aspects: 1) For the Discriminator estimation, the

OR operator means that the synthesized samples and natural

samples are alternately used to train a binary classifier with

corresponding class labels, and then the Discriminator can

judge whether the speech is synthesized or genuine. 2) As for

the Generator, the AND operator means that the synthesized

and natural samples are simultaneously used to calculate the

MSE, meanwhile the discriminant error will also affect the

estimation of Generator.

In the synthesis stage, given a random noise and specific

linguistic features, we can easily generate speech from Gener-

ator using the forward direction. We will describe the frame-

work in details in the following.

3.1. Generative Adversarial Networks

GAN is a generative model that can learn a complex relation-

ship between random noise input vector z and output parame-

ters y by an adversarial process [13]. The estimation of GANs

consist of two models: a generative model G that captures the

data distribution from random noise z, and a discriminative

model D that maximizes the probability of correctly discrim-

inating between the real examples and fake samples generated
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Fig. 1. System diagram of GAN-based multi-task learning

framework.

from G.

In this adversarial process, the generator tends to learn

a mapping function G(z) to fit the real data distribution

pdata(x) from a uniformly random noise distribution pz(z),
while the purpose of discriminator is to perfectly judge

whether the sample is from G(z) or pdata(x). So the G

and D are both trained simultaneously in the two-player

min-max game with value function:

lossgan = min
G

max
D

Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]. (1)

In the above generative model, the modes of generated

samples cannot be controlled because of the weak guid-

ance. So the conditional generative adversarial network

(CGAN) [18] is proposed to direct the generation by consid-

ering additional information y. Then the loss function can be

expressed as

losscgan = argmin
G

max
D

Ex∼pdata(x)[logD(x|y)]

+ Ez∼pz(z)[log(1−D(G(z|y)|y))]. (2)

3.2. Multi-Task Learning with GANs in SPSS

In the traditional acoustic model for SPSS, we usually mini-

mize the MSE between the predicted parameters Xmodel and

the natural speech Xreal during the estimation. The objective

can be written as

lossmse = argmin

∑n

i=1(Xreal,i −Xmodel,i)
2

n
. (3)

As Eq. (3) shows, the numerical difference (in terms of

MSE) is only concerned in the estimation, and the numer-

ical error reduction may not necessarily lead to perceptual

improvement on the synthesized speech [12]. To solve this

problem, we propose to use GANs to learn the essential differ-

ences between the synthesized speech and the natural speech

through a discriminative process.

GAN is able to generate data rather than estimate the den-

sity function. Due to the model collapse problem in the gener-

ative model in GAN [18], we propose the following generator

loss function in order to guide GAN to converge to optimal

solution such that the generative model produces desired da-

ta:

lossG = Ez∼pz(z)[G(z|y))−Xreal]
2+

Ez∼pz(z)[log(1−D(G(z|y)|y))], (4)

where Xreal∼pdata(x), and Xmodel is generated by the gen-

erator G using uniformly random noise z under condition y.

Combining Eq. (2) and Eq. (4), the final objective of our MTL

framework is:

lossmulti = argmin
G

max
D

Ex∼pdata(x)[logD(x|y)]

+ Ez∼pz(z)[G(z|y))−Xreal]
2

+ Ez∼pz(z)[log(1−D(G(z|y)|y))]. (5)

We treat the linguistic features as additional vector y, and

make the input noise z obey a uniform distribution in the in-

terval [-1,1]. Then our framework can generate the speech

Xmodel by G(z|y), and the lossmse and losscgan are estimat-

ed at the same time during training. Note that the input of

our speech generator is uniformly random noise and linguis-

tic features are used as conditions for both the generator and

the discriminator, which in different from [16].

Since the effective likelihood of GAN is unknown and in-

tractable [22], several auto-encoder GAN variants use zero-

mean Laplace distribution exp(−λ||x − G(z)||1) [26, 27] to

solve the problems. In order to directly show the likelihood

of these variants, we can simply set λ = 1 and replace the

L1 reconstruction loss with L2 norm, and then we can get

the MSE format as traditional methods. That is to say, we

can take other explicit likelihood (e.g., MSE) to solve the in-

tractable inference of GANs. The L1 reconstruction loss will

be investigated in the near future.

3.3. Phoneme Discrimination for GANs

In Section 3.2, the discriminator is a binary classifier to judge

whether the data x is from G(z) or pdata(x) under the condi-

tion y. We also try to use phoneme information to guide the

discrimination process in our multi-task framework, as shown

in Fig.2.

Assume label is a one-hot encoded vector representing

the phoneme class, which is the category of both fake and real
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Fig. 2. The discriminator with phoneme information.

samples for D. Then our goal is to minimize the cross entropy

(CE) for the real and to maximize this loss for the fake, and

the latter one means that we do not know which phoneme the

fake belongs to. So the target function of GANs in lossmulti

can be updated with

argminEx∼pdata(x)[DCE(x|y, label)]

− Ez∼pz(z)[DCE(G(z|y)|y, label)]. (6)

We obtain the new loss function considering the phoneme

classification as follows.

lossmulti−pc = argminEx∼pdata(x)[logDCE(x|y, label)]

+ Ez∼pz(z)[G(z|y))−Xreal]
2

− Ez∼pz(z)[DCE(G(z|y)|y, label)]. (7)

4. EXPERIMENTS

4.1. Experimental Setup

In the experiments, a Chinese speech corpus was used to e-

valuate the performance of our approach. The corpus con-

sists of about 10,000 utterances from a single female speak-

er. We randomly selected around 8,000 sentences for network

training, 1,000 utterances for model validation and another

1,000 for testing. Each speech waveform was sampled at 16

kHz, and we used WORLD [28] (D4C edition [29]) to ex-

tract 60-dimensional Mel-Cepstral Coefficients (MCCs), 1-

dimensional band aperiodicities (BAP) and F0 in log-scale in

5-ms step. So the final acoustic features were 63-dimensions

including one extra binary voiced/unvoiced flag. As for the

text, we made a complex text analysis module to get 138-

dimensional linguistic features, including phoneme informa-

tion, prosody boundary labeling, part of speech tagging, state

information and corresponding position index.

To benchmark the performance of the GAN-based MTL

framework, we compared four systems, listed as follows.

• BLSTM: We used bidirectional long short-term mem-

ory (BLSTM) based acoustic model as the baseline,

which contained three feed-forward layers with 512 n-

odes/layer, followed by two BLSTM layers with 512

cells and a fully-connected output layer.

Methods MCD (dB) F0 RMSE (Hz) V/UV (%)

BLSTM 4.624 18.544 6.447

ASV [16] 4.670 18.871 6.562

GAN 4.633 18.678 6.492

GAN-PC 4.628 18.616 6.464

Table 1. Objective evaluation results.

• GAN-based MTL (GAN): The proposed framework

shown in Fig. 1. For the generator G, we also used

three feed-forward and two BLSTM layers correspond-

ing to the baseline. But the input was replaced with

200-dimensional random noise under the [-1,1] uni-

form distribution. The linguistic features were added

to the output of each hidden layer in G as conditions.

As for the discriminator, two convolutional layer were

used with 5 ∗ 5 filter shape, and LReLU was treated

as the activation function followed by batch normal-

ization [24, 19]. Besides, there was a fully-connected

layer after the convolutional architecture and a binary

classification layer in the end. The linguistic conditions

were also introduced to all hidden layers in D.

• ASV as a second task [16] (ASV): We realized the

ASV approach with ωD = 1. The network architec-

ture was the same as BLSTM.

• GAN with phoneme classification (GAN-PC): The

same GAN model architecture was used, except that

the output layer of D became a 63-category phoneme

classification task, as described in Section 3.3.

Note that, for fair comparison, we didn’t use any post-

processing methods (eg. global variance [30, 31] and mod-

ulation spectrum [32, 33]) to improve the quality of synthe-

sized speech. All systems were optimized using the Adam

optimizer [34, 35], and implemented with TensorFlow [36].

4.2. Objective Evaluation

We first conducted the objective measure to evaluate the per-

formance of the four systems on the testing data. Specifically,

Mel-cepstral distortion (MCD) was used to evaluate the dis-

tortion of spectrum, and RMSE was introduced to calculate

the F0 error. Besides, the V/UV error rate was also used to

present the accuracy of the voice/unvoice flag judgements.

Table 1 shows the objective results. As shown, there

seems to be no remarkable differences among these systems.

Since one purpose of our framework was to compensate the

deficiency of traditional numerical loss function by GANs,

these numerical measures may not be suitable for evaluation

because of the internal squared error [24]. But in another

aspect, we can find that the proposed MTL framework can

compensate the instability and the mode collapse issues of

GANs and generate stable and diverse speech with the help



of traditional loss function. That is to say, GANs can utilize

the numerical loss function to limit its adversarial process.

4.3. Subjective Evaluation

We conducted listening tests to assess the quality of the syn-

thesized speech. we made four pairs of A/B preference test:

BLSTM vs. GAN, GAN vs. ASV, GAN vs. GAN-PC and

BLSTM vs. GAN-PC. For listening test, 20 sentences were

randomly selected from the test data, and all listening pairs

were presented in a shuffled order. There were 20 listener-

s participating in the test. In each test session, the listeners

were asked to choose the better one considering the perceived

speech quality, or choose the “neutral” option if there was no

difference.
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Fig. 3. The preference score (%) of A/B test.

Fig. 3 shows the preference bars of the four pairs. The

first bar of GAN vs. BLSTM indicates that the GAN-based

MTL framework can significantly improve the performance

of the synthesized speech (p < 0.0001). The listeners point-

ed out that the GAN system could produce speech with less

buzzy sounds in most cases and more natural prosody in some

samples. The second bar of GAN vs. ASV shows that the

proposed GAN approach is better than the ASV approach

(p < 0.0001). As discussed in [16], the ASV optimization

aims to make the distribution of the synthesized speech close

to the natural speech. But this method theoretically lacks the

linguistic conditional guidance in distinguishing between the

distributions of natural and synthesized speech. As a result,

as compared with ASV, we find that the proposed GAN ap-

proach can capture both subtle and rapid changes, leading

to better brightness of the synthesized speech. Fig. 4 shows

the distance of averaged global variance (GV) between natu-

ral speech and synthesized speech from different approaches.

The smaller values mean that the GVs of synthesized speech

are more similar to natural speech. The result indicates that

the GVs of GAN are closer to the natural GVs than AVS es-

pecially in the first few coefficients.

The third bar of GAN vs. GAN-PC in Fig. 3 shows that

there is a decline in performance with phoneme classifica-

tion in GANs (p < 0.001). In order to explain this phe-

nomenon, we compared the BLSTM system with GAN-PC,
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as shown in the last bar. In this preference test, GAN-PC

slightly outperforms BLSTM, but the difference is not signif-

icant between the two systems (p = 0.0253). As we know,

the phoneme information is related to the contents of speech,

which highly correlates to the intelligibility of the synthesized

samples. The BLSTM based acoustic model can already pro-

duce speech with high intelligibility. However, the purpose of

treating the phoneme label as a guidance for the discrimina-

tor in GAN-PC is to improve the intelligibility, not to make

the distribution of synthesized examples closer to the natu-

ral samples. So simply letting the discriminator distinguish

whether x is a natural sample in GAN can make the synthe-

sized speech be more related to human perception, resulting

in better subjective listening performance.

5. CONCLUSION

This paper proposed to use GANs to improve the quality of

synthesized speech. We use a multi-task learning architecture

with GANs, where the GANs can compensate the deficiency

of traditional MSE loss function while the MSE can also help

to solve the instability of GANs. Evaluation results show that

the proposed method can compensate the weakness of numer-

ical loss function and improve the performance of SPSS. The

proposed framework has a little increase in the computation

cost, compared to traditional acoustic models during the gen-

eration process, as the extra computation only comes from

noise generation and feature concatenation.

In our future work, we will focus on improving the per-

formance of the generator in GAN and try to use GAN in

end-to-end speech synthesis [37, 38, 39, 40, 41]. Since the

the MSE loss is still used to stabilize the adversarial pro-

cess in our framework, we attempt to find a self-stabilizing

architecture to directly estimate the distribution of synthe-



sized speech, such as using Wasserstein GAN [35] and VAE-

GAN [22].
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